GCE

Physics A

Advanced GCE

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

G484 The Newtonian World JAN 2011 STANDARDISATION (SCORIS) mark-scheme

Question	Expected Answers	Marks	Additional guidance
1 (a)(i)	Total momentum is constant/conserved For a closed system/provided no external forces (WTTE)	B1 B1	"total momentum before $=$ total momentum after" Allow $m_{1} u_{1}+m_{2} u_{2}=m_{1} v_{1}+m_{2} v_{2}$ or equivalent Do not accept "momentum is constant" Do not accept "momentum is conserved"
(a)(ii)	Some loss of kinetic energy (OR KE OR E_{K})(during the collision)	B1	Allow answers in terms of Coeff't of Res. Coeff't of Restitution < 1 e.g. speed of separation/speed of approach <1
(a)(iii) 1	$\begin{aligned} & (2.4 \times 3.0)-(1.2 \times 2.0)=3.6 v \\ & v=1.3 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	must see -ve sign hence 2.67 scores ZERO Allow $4 / 3 \mathrm{~ms}^{-1}$ and 1.34 but not 1.4
(a)(iii) 2	Any KE correctly calculated: 10.8J, 2.4J, (or 13.2 or 8.4), 3.18J 13.2 and 3.18 (or any value between 3.2 and 3.0) seen	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	ECF from a(iii) 1 If $1.3 \mathrm{~ms}^{-1}$ is used KE after is 3.04 ECF from a(iii)1 provided final KE is less than initial KE Allow answers in terms of Coeff't of Res. e.g. speed of separation/speed of approach $=0 / 5=0$
(b)(i)	$\begin{aligned} \text { valid sub }^{n} \text { in } V & =\pi r^{2} \mathrm{~h}: ~ e . g . ~ \\ & \times 5.0^{2} \times 12 \times 5.0\left(=1500 \pi / 4710 \mathrm{~m}^{3}\right) \\ \mathrm{m} & =\mathrm{V} \rho=\pi \times 5.0^{2} \times 12 \times 5.0 \times 1.3=6126 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Do not accept a bald answer of 6000
(b)(ii) 1	momentum $=6130 \times 12=7.4\left(\right.$ or 7.36) $\times 10^{4}\left(\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}\right)$	B1	Allow 7.2×10^{4} if 6000 kg used \& ecf from (b)(i).
(b)(ii) 2	$\begin{aligned} & F=73600 / 5 \\ & F=14700 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Accept 14400 if 7.2×10^{4} is calculated in 1
(b)(ii) 3	mass of helicopter $=14700 / 9.81=1500 \mathrm{~kg}$	B1	Allow ecf from (b)(ii)2. Allow g=10 N/kg
	Total	13	

Question	Expected Answers	Marks	Additional guidance
2 (a)(i)	resultant OR net OR overall force acts (on object) perpendicular to the velocity OR towards the centre of the circle	B1	Ignore any reference to "centripetal force"
(a)(ii)	velocity OR direction is always changing acceleration is in direction of force OR is towards the centre/perp. to velocity	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow a (resultant) force is acting (hence there is an acceleration))
(b)	$\begin{aligned} & \text { centripetal force } \mathrm{OR} \mathrm{mv} v^{2} / \mathrm{r}=\mathrm{GMm} / \mathrm{r}^{2} \quad \mathrm{OR} \mathrm{v}^{2} / \mathrm{r}=\mathrm{GM} / \mathrm{r}^{2} \\ & v^{2}=\mathrm{GM} / \mathrm{r} \Rightarrow \mathrm{r}=\mathrm{GM} / \mathrm{v}^{2} \\ & \mathrm{r}=6.67 \times 10^{-11} \times 6 \times 10^{24} / 3700^{2} \\ & \mathrm{r}=\mathbf{2 . 9 2 \times 1 0 ^ { 7 } \mathrm { m }} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
(c)(i)	Any mass ejected in the same direction as the satellite (WTTE)	B1	Idea of rocket motor pushing against direction of motion of satellite.
(c)(ii)	$\begin{aligned} & v^{2} r=\text { constant } O R v^{2}=G M / r \quad O R v=\sqrt{ }\left\{\left(6.67 \times 10^{-11} \times 6 \times 10^{24}\right) / 2 \times 10^{7}\right\} \\ & \text { new } v=\sqrt{ }\left(3700^{2} \times 2.94 / 2\right)=4500 \mathrm{~m} \mathrm{~s}^{-1}(4473) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
	Total	10	

Question	Expected Answers	Marks	Additional guidance
3(a)(i)	(1 kWh is) the energy used/provided by a 1 kW device in 1 hour	B1	$\begin{aligned} \text { Allow } 1 \mathrm{kWh} & =60 \times 60 \times 1000 \\ & =3.6 \times 10^{6} \mathrm{~J} \end{aligned}$
(a)(ii)	Energy used in $\mathrm{kWh}=(70 / 1000) \times(7 \times 24)=11.8 \mathrm{kWh}$ Cost $=11.8 \times 0.12=£ 1.41$ (or £1.4)	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Any arithmetic error loses one mark
(b)(i)	$\begin{aligned} \text { use of } \mathrm{E} & =\mathrm{mc} \Delta \theta \text { e.g. } \mathrm{E}=2 \times 3800 \times(18-3) \\ & =1.14 \times 10^{5} \mathbf{J} \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { A1 } \end{aligned}$	
(b)(ii)	Rate of energy loss $=1.14 \times 10^{5} / 100 \times 60=19 \mathrm{~W}$	B1	Allow ecf for cand's (b)(i) value
(c)	1. $18^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ negative gradient line 2. horizontal line on time axis 3. $0^{\circ} \mathrm{C}$ to $-18^{\circ} \mathrm{C}$ line of steeper -ve gradient (judged by eye) than in 1	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	
	Total	9	

Question	Expected Answers	Marks	Additional guidance
4(a)(i)	displacement is the distance (of the body) from an equilibrium position. amplitude is the maximum displacement.	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow mean/rest/central/mid point Not original, fixed point This mark can only be gained if the word maximum/greatest/largest is spelled correctly. Allow distance
(a)(ii)	frequency is the number of oscillations/cycles per unit time/second angular frequency is product of $2 \pi \times$ frequency OR $2 \pi /$ period.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Do not allow "swings" Allow $2 \pi \mathrm{f}$
(b)(i) 1	amplitude $=(18-13) / 2=2.5 \mathrm{~m}$	B1	
(b)(i) 2	$\begin{aligned} \text { frequency } & =1 /(12.5 \times 3600)=(1 / 45000) \\ & =\mathbf{2 . 2}(2) \times 10^{-5} \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Accept any valid sub ${ }^{n}$ of time for $1^{\text {st }}$ mark Accept $0.08 \mathrm{~h}^{-1}$ OR $1.3 \times 10^{-3} \mathrm{~min}^{-1}$ if unit is seen to replace Hz .
(b)(ii)	$\text { correct use of } \begin{aligned} v_{\max } & =2 \pi \mathrm{fA} \text { e.g. } 2 \pi \times 2.22 \times 10^{-5} \times 2.5 \\ & =\mathbf{3 . 5} \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}(3.46 \text { or } 3.49) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow ecf from (b)(i)1 and 2 for full marks: if $A=5$ is used $v_{\text {max }}=6.98 \times 10^{-4}$ (6.9 to 7) if $A=18$ is used $v_{\text {max }}=2.5 \times 10^{-3}$
(b)(iii)	$\begin{aligned} & \text { correct use of } A(\cos 2 \pi \mathrm{ft}): \text { e.g. } 2.5 \cos \left[2 \pi \times 2.22 \times 10^{-5} \mathrm{t}\right] \\ & \left(=2.5 \cos \left(1.39 \times 10^{-4} \mathrm{xt}\right)\right. \\ & \mathrm{d}=15.5+2.5 \cos \left[2 \pi \times 2.22 \times 10^{-5} \mathrm{t}\right] \text { OR } 15.5+2.5 \cos \left(1.39 \times 10^{-4}\right. \\ & \mathrm{xt}) \end{aligned}$	C1 A1	Allow $2.5 \cos [2 \pi t / 45000]$ Accept A(sin 2 mft$)$ throughout Allow ecf from (b)(i) and (b)(ii)
	Total	11	

Question	Expected answers	Mark	Additional guidance
5(a)(i)	smoke particles move in random/haphazard/zig-zag/jiggling/jerky manner	B1	random/haphazard/zig-zag/ jiggling/jerky must be spelled correctly
(a)(ii)	ANY 3 of the following: B1 + B1 +B1 movement of smoke particles caused by (being hit by) randomly moving air molecules smoke particles are continuously moving because the air molecules are continuously moving smoke particles are visible but air molecules are not hence air molecules must be (very) small. small movement of smoke particles is due to the large numbers of air molecules hitting from all sides	(B1) (B1) (B1) (B1) B3	An observation must be linked to an appropriate conclusion Condone reference to "water molecules" in place of air molecules. Condone air atoms/particles. Max 3
(b)	(absolute) temp \propto mean KINETIC ENERGY $1 / 2 m_{0}\left(v_{0}\right)^{2}=1 / 2 m_{h}\left(v_{h}\right)^{2}$ OR $m v^{2}$ is constant OR $v^{2} \propto 1 / m$ OR mean KE of oxygen = mean KE of hydrogen $\left.v_{0}=\sqrt{ }\left(m_{h} / m_{0}\right) \times 1800=\sqrt{ }(.002 / .032) \times 1800\right\}=450 \mathrm{~m} \mathrm{~s}^{-1} .$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow (1/2)m<c ${ }^{2}>=(3 / 2) \mathrm{kT}$
	Total	7	

Question	Expected answer	Mark	Additional guidance
6(a)(i)	pressure is inversely proportional to volume (WTTE) for a fixed mass of gas at constant temperature (WTTE)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept $P \propto 1 / \mathrm{V}$ or $\mathrm{PV}=$ constant
(a)(ii) 1	hyperbolic (i.e.Boyles law) curve shape looks asymptotic to both axes i.e does not touch axes	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
(a)(ii) 2	straight line through origin OR would extrapolate back to the origin	B1	
(b)(i)	correct sub ${ }^{\mathrm{n}}$ in $\mathrm{pV}=\mathrm{nRT} \Rightarrow 5 \times 10^{5} \times 0.040=n \times 8.31 \times 288$ OR sub ${ }^{\mathrm{n}}$ into $\mathrm{pV}=\mathrm{NkT} \Rightarrow 5 \times 10^{5} \times 0.040=\mathrm{N} \times 1.38 \times 10^{-23} \times \underline{288}$ (hence) $\mathrm{n}=5 \times 10^{5} \times 0.040 /(8.31 \times 288)=\mathbf{8 . 4} \mathbf{(8 . 3 6)} \mathrm{mol}$ (hence) $N=5.03 \times 10^{24}$ molecules $\Rightarrow 8.36$ moles	C1 A1	Any incorrect Kelvin temp (eg 188) correctly used treat as an AE. Allow 8.35 Use of $15^{\circ} \mathrm{C}$ scores ZERO
(b)(ii)	from $\mathrm{pV}=\mathrm{nRT}$ new $\mathrm{n}=7.52 \mathrm{~mol}$ moles lost is $8.36-7.52=0.84 \mathrm{~mol}$ $=2.3$ (2.34) $\times 10^{-2} \mathrm{~kg}(0.023)$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow ecf from b(i) OR Pressure has dropped by $1 / 10$ number of moles lost $=0.836 \mathrm{~mol}$; Mass lost $=0.836 \times 0.028=2.3 \times 10^{-2}$ kg
	Total	10	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

